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Abstract—Strong passwords are fundamental to the security of
password-based user authentication systems. In recent years, much
effort has been made to evaluate the password strength or to generate
strong passwords. Unfortunately, the usability or memorability of
the strong passwords has been largely neglected. In this paper, we
aim to bridge the gap between strong password generation and the
usability of strong passwords. We propose to automatically generate
textual password mnemonics, i.e., natural language sentences,
which are intended to help users better memorize passwords.
We introduce DeepMnemonic, a deep attentive encoder-decoder
framework which takes a password as input and then automatically
generates a mnemonic sentence for the password. We conduct
extensive experiments to evaluate DeepMnemonic on the real-world
data sets. The experimental results demonstrate that DeepMnemonic
outperforms a well-known baseline for generating semantically
meaningful mnemonic sentences. Moreover, the user study further
validates that the generated mnemonic sentences by DeepMnemonic
are useful in helping users memorize strong passwords.

1 INTRODUCTION

Nowadays, user authentication is the key to ensuring the
security of user accounts for most online services, such as
social media, e-commerce, and online banking. Although
various authentication schemes have emerged in recent
years, e.g., pattern-based or biometric-based authentication,
the password-based authentication remains a prevailing
choice in most real-world applications, whose security relies
on the difficulty in cracking passwords. Choosing strong
passwords becomes extremely important and necessary.

In reality, service providers often present password
policies to aid users in creating strong passwords. Such
policies may require that a password be longer than a pre-
defined minimum length, or contain multiple types of characters
(letters, numbers, and special characters). Such policies are
expected to guide the generation of passwords that are
resistant to password attacks [1], but users tend to choose
passwords that are easy to memorize in practice [2]. As
a result, password policies may not be as effective as
expected [3].
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Much effort has been made to evaluate the strength of
passwords [4] [5] [6] or to generate strong passwords [7]
[8] [9]. Various methods, on the other hand, have been
presented to crack passwords, assess whether passwords
are sufficiently strong or not, or reduce password guess-
ability [10] [11] [12]. However, no rigorous effort has been
made to address the memorability of strong passwords.
Strong passwords are usually difficult for users to memorize
because their entropy values are beyond many users’ mem-
orability [13] [14] [15]. The memorability of strong password
has become one of the biggest hindrances to the wide
adoption of strong passwords in real-world applications.

One possible approach to addressing this problem is
to generate passwords that are not only secure but also
easy to remember. Different strategies have been applied to
generating word-based memorable passwords, such as pro-
nounceable passwords [16] [17], meaningful passwords [18],
and passwords concatenating random words [19]. Unfor-
tunately, some of such strategies were demonstrated to be
vulnerable to certain attacks [18] [20], and moreover, there
is no theoretical guarantee that the generated passwords are
indeed strong. In addition, various user-defined rules were
adopted for the generation of expression-based memorable
passwords [21] [20] [22]. One limitation of this approach
is that the strength of the generated passwords largely
depends on the uncertainty of the phrases chosen by users.
This approach also tends to suffer from the low quality of
the generation rules [22].

Instead of generating strong and memorable passwords,
recent effort has been made to assist users in remembering
passwords using external tools, such as helper cards [23],
hint images [24] [25] and engaging games [26]. In particular,
Jeyaraman and Topkara [27] proposed a heuristic method
that relies on textual hint headlines to deal with the
memorability issue of strong passwords. Given a password,
they proposed to search and find an existing natural language
headline that suggests the password from a given corpus
(i.e., Reuter Corpus Volume 1). If the search is unsuccessful,
they would then use an external semantic lexicon named
WordNet [28] to replace certain words in an existing headline
with their synonyms. In this way, they could find a headline
or a variant headline and use it as a hint for memorizing a
given password. This approach is subject to the following
limitations: (i) It can only handle the passwords composed
of alphabetic characters. Manual intervention is needed to
tackle digits or special characters, which are non-trivial
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for the composition of strong passwords in reality. (ii)
Meaningful hint headlines are often missing by simply
searching the given corpus while creating variant headlines
at the word level by using an external lexicon may result in
syntactically incorrect or semantically inconsistent headline
sentences. (iii) It only works for short passwords that consist
of 6 or 7 characters due to the limited lengths of the
headlines in the corpus.

In this work, given strong passwords, we propose
to automatically generate mnemonics, i.e., natural language
sentences, to bridge the gap between security and mem-
orability of the passwords. Specifically, we introduce a
new mnemonic generation system named DeepMnemonic,
which is capable of generating a semantically meaningful
mnemonic sentence for each given textual password. The
core of DeepMnemonic is an attentive encoder-decoder
neural network. It learns to transform any given user
password into a mnemonic sentence by first encoding
the password character sequence and then decoding the
encoded information into the mnemonic sentence via a
specially designed attention strategy. Both encoder and
decoder are implemented with recurrent neural networks
that can capture the contextual dependency among pair-
wise input passwords and mnemonic sentences. The key
insight of DeepMnemonic is inspired by a cognitive psy-
chology theory [29], which states that the human ability to
memorize and recall certain information is positively influ-
enced by associating additional semantic content with the
information [27]. The natural language mnemonic sentences
generated by DeepMnemonic can provide such semantically
meaningful content for users to remember and recall the
given strong passwords.

Different from the existing textual password hint sys-
tems [27], DeepMnemonic enjoys several unique properties:
(i) Feature-free: DeepMnemonic is an end-to-end solution,
which aims to directly map a given textual password to its
corresponding mnemonic sentence, and no manual feature
engineering is needed in the learning process. (ii) Long-
password-friendly: The attention-based recurrent neural
network component in DeepMnemonic is capable of identi-
fying salient information in long passwords for generating
semantically meaningful sentences. (iii) Learning-adaptive:
The learning of DeepMnemonic is fitted to different types
of password-sentence training pairs so as to process diver-
sified passwords and meet various mnemonic generation
requirements.

In summary, we have made the following main contri-
butions in this work:

• We introduce DeepMnemonic, a mnemonic sentence
generation system, to help users remember
strong passwords. DeepMnemonic utilizes an
encoder-decoder neural network model to generate
meaningful mnemonic sentences for given strong
passwords.

• We quantitatively evaluate the capability of
DeepMnemonic in mnemonic sentence generation.
Our experimental results show that DeepMnemonic
achieves 99.09% MP (Mnemonic Proportion) and
16.47 BLEU-4 (BiLingual Evaluation Understudy),
outperforming an n-gram language model baseline
(83.62% MP and 5.09 BLEU-4).

• We conduct a user study to qualitatively evaluate the
helpfulness of DeepMnemonic. The results demon-
strate that DeepMnemonic helps users with 54.47%

decrease in time spent on remembering passwords
and 57.14% decrease in recall error measured by
the edit distance between each pair of the given
password and its recalled version.

The rest of this paper is organized as follows. Section 2
describes the password mnemonic generation problem
and its application scenario. Section 3 introduces
DeepMnemonic, a deep attentive encoder-decoder
system that can generate mnemonic sentences for the
given textual passwords. In Section 4 and Section 5, we
evaluate DeepMnemonic in experiment and user study,
respectively. Section 6 discusses several usability issues of
DeepMnemonic. Section 7 summarizes the related work,
and Section 8 concludes this paper.

2 PROBLEM STATEMENT AND APPLICATION SCE-
NARIO

Given a strong textual password that often consists of
random characters, the aim of this work is to assist common
users in remembering the password properly. According
to a famous cognitive psychology theory [29], in order to
memorize a piece of information, it is helpful to associate
some external tools or contextual contents with the informa-
tion. More specifically, the cognitive psychology theory [29]
explains that the information to be remembered can be a list
of items, for example, a list of characters in a password. For
the semantic content, it is not limited to a vivid image rep-
resenting, symbolizing, or suggesting each item of semantic
information. It indicates that, in order to better memorize
a piece of information, users can construct such semantic
content and associate it with the information. Inspired
by the theory, we propose DeepMnemonic, an intelligent
system that helps users construct the semantic content by
suggesting a meaningful mnemonic sentence corresponding
to each character in the password. For example, given a
text password Tcahm,“Wac?” to be remembered, a semantic
content can be The child asked her mother,“ Who are children?”,
where the first letter of each word in the mnemonic sentence
is suggesting and corresponding to each character in the
password.

Technically, the problem of password mnemonic gener-
ation is closely related to the machine translation problem
in natural language processing. Both tasks aim to address
a sequence-to-sequence learning problem. Specifically, in
machine translation, the goal is to generate a translated
sentence in a target language given a sentence in a source
language, whereas in our case, we focus on generating
a mnemonic sentence for a given password (which is a
sequence of characters). We propose to exploit a neural
sequence-to-sequence language model [30] to translate a
given password (a character sequence) into a meaningful
mnemonic sentence (a word sequence).

Formally, let D be a set of N pairs of password and
mnemonic sentence (Xn, Yn) (n ∈ {1, · · · , N}), where Xn

denotes a password of T characters, Xn = x1, x2, · · · , xT ,
where the character xt (t ∈ {1, · · · , T}) can be alphabetic,
punctuation, digital, and special characters, while Yn refers
to a mnemonic sentence of T dictionary terms, Yn =
y1, y2, · · · , yT , where the term yt (t ∈ {1, · · · , T}) can be
words, punctuation marks, numbers, and special tokens. In
the following, we use words or tokens to refer to dictionary
terms. For each pair of password and mnemonic sentence, a
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Fig. 1: An applicable scenario of DeepMnemonic in the password-based authentication system.

one-to-one mapping relationship exists between the char-
acters of the password and the words of the mnemonic
sentence, where each character of the password may appear
at certain position of the corresponding mnemonic word.
For example, given a text password O,y,slt., a mnemonic
sentence can be Oh, yes, something like that., where each
alphabetic character of the password corresponds to the first
letter of respective words in the mnemonic sentence.

We formulate the mnemonic sentence generation as
a natural language generation problem. Given a (strong)
password Xn, the problem is to automatically generate
a semantically coherent and meaningful mnemonic sen-
tence Yn of the same length as Xn. Our solution, named
DeepMnemonic, employs a neural attentive encoder-decoder
language model [30] to generate textual mnemonic sen-
tences for passwords. DeepMnemonic builds on a sequence-
to-sequence learning framework, which encodes an input
password (i.e., a sequence of characters) and automatically
generates a mnemonic sentence (i.e., a sequence of words)
based on the encoded contextual information.

Figure 1 shows an applicable scenario of DeepMnemonic
in the conventional password-based authentication system.
When a user requires to create a password for registration
(step 1 and step 2), the authentication service requests the
password generator to generate a strong password (step
3). Typically, the generated password may not be easy
for the user to remember due to the randomness of the
password [13]. To improve the memorability of the strong
password, the password generator requests DeepMnemonic
to produce a mnemonic sentence corresponding to the
generated password (step 4). Once the password generator
receives the response from DeepMnemonic (step 5), it re-
turns the generated password as well as the corresponding
mnemonic sentence to the service (step 6). Finally, the
service distributes the password and mnemonic information
to the user via a secure channel (step 7).

Notice that DeepMnemonic does not modify the strong
passwords generated by the password generator, and hence
does not compromise the security of the generated pass-
words, under the assumption that users keep both pass-
words and associated mnemonic sentences secure. The
passwords’ resilience to existing password attacks, such
as brute force attacks, dictionary attacks, and guessing
attacks, relies on strong password generation which has
been well studied independently of our research. DeepM-
nemonic does not generate strong passwords but focuses
on the usability of strong passwords. It can generate a
corresponding mnemonic sentence for the password so as
to overcome the hindrance to the practical use of strong
password generation techniques.

3 METHODOLOGY

3.1 Overview
DeepMnemonic applies a deep attentive encoder-decoder
learning model [30] to learn a sequence-to-sequence map-
ping from an input password (i.e., a character sequence)
to an output mnemonic sentence (i.e., a word sequence).
The encoder of DeepMnemonic captures the underlying
contextual “meaning” of a password from its sequence of
characters, while the decoder generates a corresponding
mnemonic sentence based on the encoded content of pass-
word. Typically, the lengths of the given passwords are vari-
able, and strong passwords may consist of long sequences
of random characters. DeepMnemonic may lose focus in
its process, if it treats all characters of an input password
equally. To tackle this issue, DeepMnemonic exploits an
attention mechanism [30] to dynamically determine which
parts of an input password are more relevant to generating
a semantically meaningful mnemonic sentence.

Figure 2 shows the encoder-decoder learning framework
of DeepMnemonic. The encoder first takes as input a textual
password Xn of length T ,

Xn = (x1, x2, · · · , xt, · · · , xT ),

where xt ∈ RVC , t ∈ {1, · · · , T} denotes a character, and
VC is the size of the input character vocabulary. It derives
a hidden context-aware summary or “meaning” of the
sequence of characters from input password via a bidirec-
tional recurrent neural network (BiRNN) [31]. Based on the
encoded hidden “meaning” of the password, the decoder
of DeepMnemonic utilizes an attentive mechanism [30] to
generate the corresponding mnemonic sentence Yn word by
word,

Yn = (y1, y2, · · · , yt, · · · , yT ),

where yt ∈ RVW denotes a word, and VW is the size of the
output word vocabulary.

3.2 Encoder
Given an input passwordXn, we employ a BiRNN to derive
the hidden semantic representation as the meaning of the
password. BiRNN consists of both forward and backward
processes, where the forward process reads the password
character sequence in the original order, while the backward
process reads the sequence in the reverse order. BiRNN
can thus capture contextual patterns in both directions (left
and right) for each password character by summarizing the
information not only from the preceding characters but also
from the following ones in the sequence.

Formally, by using the gated recurrent units (GRU) [32],
which is a popular choice for modern RNNs, the forward
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Fig. 2: The encoder-decoder learning framework of
DeepMnemonic.

process of BiRNN computes the hidden state ht at a given
time step t as follows. First, the forward reset gate ~rt is
computed as,

~rt = σ( ~W (r)E(C)xt + ~U (r)~ht−1), (1)

where σ is the sigmoid function, E(C) ∈ Rm×VC is the
character embedding matrix for the password characters,
~W (r) ∈ Rn×m and ~U (r) ∈ Rn×n are trainable parameter
matrices, and m and n refer to the dimensionalities of
the character embedding and the hidden state vector,
respectively.

Similarly, the forward update gate ~zt is computed as,

~zt = σ( ~W (z)E(C)xt + ~U (z)~ht−1), (2)

where ~W (z) ∈ Rn×m and ~U (z) ∈ Rn×n are trainable
parameter matrices.

Then, the forward hidden state vector ~ht is computed as,

~ht = (1− ~zt) ◦ ~ht−1 + ~zt ◦ ~̃ht, (3)

where
~̃
ht = tanh( ~WE(C)xt + ~U [~rt ◦ ~ht−1]),

both ~W ∈ Rn×m and ~U ∈ Rn×n are trainable parameters,
and ◦ refers to an element-wise multiplication.

Following the aforementioned steps, the backward hid-
den state ~ht can be computed reversely for any given time
step t. Note that the character embedding matrix E(C) is
shared for both forward and backward processes of BiRNN.
Next, we concatenate both forward and backward hidden
states ~ht and ~ht for each time step t, and derive a set of
overall hidden states (h1, · · · , hT ), where

ht =

[
~ht
~ht

]
. (4)

3.3 Decoder
Based on the encoded hidden states (h1, · · · , hT ) of the
input password, the decoder of DeepMnemonic employs
an attention mechanism to evaluate the importance of
individual hidden states. Then, it derives an overall context-
aware representation of the hidden states in order to

generate each target word in the corresponding mnemonic
sentence.

In particular, for each encoded hidden state ht at time
step t, the decoder first computes an attentive weight αt′,t
with regard to the contextual state st′−1 at time step t′,

αt′,t =
exp(et′,t)∑T
τ=1 exp(et′,τ )

, (5)

where

et′,t = v(a)
T
tanh(W (a)st′−1 + U (a)ht)

is an alignment model that evaluates the relevance between
the input hidden state ht and the previous output hidden
state st′−1. The v(a) ∈ Rn

′
, W (a) ∈ Rn

′×n, and U (a) ∈
Rn

′×2n are trainable parameters, and n′ refers to the
dimensionality of the hidden state vector of the attention
layer.

Then, the attentive context vector ct is computed via a
weighted sum,

ct′ =
T∑
t=1

αt′,tht. (6)

We can then compute the hidden state st′ of the decoder
at time t′ given the hidden states of encoder via a decoder
GRU as below,

st′ = (1− zt′) ◦ st′−1 + zt′ ◦ s̃t′ , (7)

where

s̃t′ = tanh(WE(W )yt′−1 + U [rt′ ◦ st′−1] + Cct′),

zt′ = σ(W (z)E(W )yt′−1 + U (z)st′−1 + C(z)ct′),

rt′ = σ(W (r)E(W )yt′−1 + U (r)st′−1 + C(r)ct′). (8)

In the above formulas, E(W ) ∈ Rm×VW is the word
embedding matrix for the output mnemonic sentence;
W,W (z),W (r) ∈ Rn×m, U,U (z), U (r) ∈ Rn×n and
C,C(z), C(r) ∈ Rn×2n are all trainable parameters. m and
n are the dimensionalities of the word embedding and
the hidden state vector, respectively. Note that the initial
hidden state of decoder s0 is computed as,

s0 = tanh(W (s) ~h1), (9)

where W (s) ∈ Rn×n is the parameter matrix.
Next, given the decoder state st′ , the attentive context

vector ct′ , and the previous generated word yt′−1, we
follow [30] and define the probability for generating the
target word yt′ as follows,

p(yt′ |st′ , ct′ , yt′−1) ∝ exp(yTt′−1W
(o)lt′), (10)

where
lt′ = [max{l̃t′,2k−1, l̃t′,2k}]Tk=1,··· ,K ,

and W (o) ∈ RVW×K . The hidden state l̃t′ is computed as
follows,

l̃t′ = U (o)st′ + V (o)E(W )yt′−1 + C(o)ct′ , (11)

where U (o) ∈ R2K×n, V (o) ∈ R2K×m, and C(o) ∈ R2K×2n

are trainable parameters.
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4 EXPERIMENTS

We conducted quantitative experiments on a large-scale
publicly available dataset to evaluate DeepMnemonic for
mnemonic sentence generation. We also carried out a
case study to explore the influence of password lengths
and digital/special characters. In addition, we provided
a visualized understanding of the attention mechanism in
DeepMnemonic.

4.1 Dataset

The “Webis-Simple-Sentences-17” is a publicly available
data source for analyzing expression-based passwords, and the
sentences in the dataset are similar to the human-chosen
mnemonics in terms of syllable distribution [22]. After
filtering out those sentences that contain non-English words,
we derived a password from each remaining sentence
by concatenating the first letter of each word and the
rest special characters (including punctuation marks and
numerical digits) in the original order as shown in the
sentence. For example, a password O,y,slt. can be derived
from the following sentence, Oh, yes, something like that. In
this way, we collected totally 500,000 pairs of passwords
and sentences, forming a ground-truth dataset for building
DeepMnemonic. It is worth noting that, in creating the
ground truth data, it is also possible to derive a password
by concatenating the last (or a middle) letter of each word
and the rest special characters in each sentence.

In preprocessing the ground-truth data, all words of each
sentence were converted to lowercase, which was helpful to
reduce the size of vocabulary for the language generation.
In particular, by following the given passwords, we can
easily restore the corresponding words of the generated
mnemonic sentences to uppercase wherever applicable. In
addition, extra symbols, such as <s> and </s>, were
inserted at the start and the end of each sentence to indicate
its boundary. A special unknown symbol, i.e., <UNK>, was
included in the vocabulary, and would be used for the
generation of sentences when no appropriate words can
be predicted. In the pairwise ground-truth dataset, the
minimum and maximum lengths of passwords are 8 and
16, respectively, which are compatible with the password
length requirements in many authentication systems.

Among the ground truth dataset, we randomly selected
450,000 pairs as training data, and used the rest 50,000 for
testing. Among the training data, 20% of the pairs were
randomly held out as validation data for model selection.
After preprocessing, we obtained a vocabulary of 109,584
words (tokens) for the mnemonic sentence generation task.

4.2 Experimental Setting

In DeepMnemonic, the hidden layer sizes of both encoder
and decoder were set to 256, which were optimally selected
using the validation set. The dropout strategy has been pre-
viously shown effective to prevent neural network models
from overfitting [33] and the dropout rate was set to 0.2 in
our experiments.

Note that no extra information, e.g., pre-defined gen-
eration rules, is required beyond training data. Once the
training process is done, the DeepMnemonic can be used to
automatically generate a mnemonic sentence for any given
password.

4.2.1 Beam Search
Simply generating the best word that achieves the highest
predictive probability at each time step may not always
result in an overall semantically meaningful sentence in
practice. Therefore, a left-to-right beam search strategy [34]
was employed to find the most likely mnemonic sen-
tence [35] [30] for each given password.

In particular, the beam search based decoder stores a
predetermined number b (beam width) of partial sentences,
where each partial sentence is a prefix of a candidate
mnemonic. At each time step, each partial sentence in the
beam grows with a possible mnemonic word from the
decoder vocabulary. Clearly, this process would greatly
increase the number of candidate sentences. To overcome
this issue, only b most likely candidates are maintained
in terms of their predicted probabilities. Once the end of
sentence symbol is appended to a candidate mnemonic,
it is included in the set of full mnemonic sentences. In
general, the wider the beam width b is, the more candidate
mnemonics the decoder searches for, and thus the better
results could be achieved.

4.2.2 Baseline
The n-gram language model is widely known as one of the
dominant methods for probabilistic language modeling [36].
As a non-parametric learning method, it primarily utilizes
the preceding sequence of n − 1 words to estimate a
conditional probability for the prediction of the current
word. Various values of n were tested for n-gram, and the
bigram language model (n = 2) achieved decent generation
performance and was chosen as the baseline to benchmark
the proposed DeepMnemonic.

The bigram language model depends on the preceding
word for estimating the conditional probability, and then
generates the current word that has the highest probability.
Therefore, the bigram model is unable to automatically
figure out the relationship between a given password and
its mnemonic sentence, i.e., the correspondence between the
alphabetic characters of the password and the first letters
of mnemonic words in the sentence. To properly apply the
bigram language model to password mnemonic generation,
we manually adopted a pre-defined generation rule. Specif-
ically, to generate a mnemonic word, it is required that the
word not only achieve the highest conditional probability
(given its preceding word), but its first letter also must
be identical to the corresponding character in the given
password.

4.2.3 Evaluation Metrics
Two metrics were used to evaluate the quality of generated
mnemonic sentences via DeepMnemonic and the baseline
method. One metric is BLEU (BiLingual Evaluation Un-
derstudy), which is one of the most popular metrics for
evaluating the quality of machine translation task in natural
language processing [37]. Following [30], we used BLEU to
evaluate the quality of the generated mnemonic sentences
with respect to ground-truth sentences in the test set, where
the quality refers to the correspondence between each pair
of the generated sentence and the ground-truth sentence. In
other words, the closer the generated mnemonic sentence
is to the ground-truth sentence, the more meaningful and
consistent it is. BLEU-n is defined as follows (the higher, the
better).
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BLEU -n = B · exp( 1

N ′

N ′∑
n=1

logpn),

where N ′ is the maximum length of n-grams and N ′ = 4
was used in the experiments. B refers to brevity penalty,
and is computed as

B =

{
1 if c > r
e1−r/c if c ≤ r

}
,

where c is the size of the generated mnemonic set, and r
is the size of the ground truth sentence set. The modified
n-gram precision pn is computed as

pn =

∑
C∈H

∑
n-gram∈C Countclip(n-gram)∑

C′∈H
∑

n-gram′∈C′ Count(n-gram′)
,

where H is the set of generated mnemonic sentences,
Count(n-gram′) is the number of n-gram′s in a generated
mnemonic, and Countclip(n-gram) is the clipped number
of the n-gram of a generated mnemonic with regard to the
corresponding ground-truth mnemonic sentence.

The other metric, Mnemonic Proportion (MP), is specif-
ically defined for testing the matching proportion between
pair-wise passwords and mnemonic sentences. Specifically,
given each pair of password Xn and generated mnemonic
sentence Yn, MP calculates the proportion of the cases
where each word yt of mnemonic Yn does start with the
corresponding character xt in password Xn, as shown
below:

MP =

∑N
n=1MPn
N

,

where N is the size of the test set. Then MPn is defined as,

MPn =
|{yt| yt ∈ Yn andFirstLetter(yt) = xt}|

|Xn|
where |Xn| is the length of password Xn, and
FirstLetter(·) is a function that returns the first letter
of a word.

4.3 Experimental Results
This section reports the results of mnemonic sentence
generation via DeepMnemonic and the baseline model in
terms of MP and BLEU. DeepMnemonic ran on Nvidia Tesla
P100 GPU with 16GB memory. Its training process with
450,000 training data pairs took around 15 hours, and the
inference on the entire test data set with 50,000 passwords
took about 5 minutes.

4.3.1 MP
Table 1 shows the MP results of the DeepMnemonic and
bigram language model (the higher, the better). As we can
see, DeepMnemonic achieves much better results compared
to Bigram over different beam widths.

Given beam width b = 1, DeepMnemonic attains an
MP value of 99.09%, while Bigram only achieves 83.62%
MP. When the beam width increases to 5, the Bigram MP
increases up to 98.44%, but is still lower than DeepM-
nemonic. Surprisingly, increasing the beam width does not
lead to significant gain to DeepMnemonic. This suggests
that DeepMnemonic can achieve a high MP value given a
small beam width b = 1, and it is not sensitive to the choice
of width of the beam search.

TABLE 1: The MP results of DeepMnemonic and bigram
language model (Bigram) given beam width (b) of 1 and 5.

DeepMnemonic Bigram

b = 1 99.09% 83.62%

b = 5 99.15% 98.44%

4.3.2 BLEU
This section reports the BLEU-n scores for the gener-
ated sentences with regard to ground-truth mnemonic
sentences [37] [35]. Table 2 lists the BLEU-n results with
the order n ∈ {1, 2, 3, 4} (N ′ = 4) for DeepMnemonic
and Bigram given different beam width b ∈ {1, 5}. Over-
all, DeepMnemonic outperforms Bigram significantly and
consistently in all cases.

If beam width is fixed at b = 1 or b = 5 , the BLEU-n
score for each model decreases as the order n grows from
1 to 4. This is expected, as increasing the order n results in
a stricter evaluation of BLEU for the generated sentences,
which is consistent with the findings in [37]. In other words,
not only are the words between each pair of the generated
and the ground-truth sentences required to be identical, but
the order of the words in the n-gram also needs to be exactly
the same.

DeepMnemonic achieves the best BLEU-1 of 45.29 com-
pared to the baseline Bigram given the beam width b = 5.
Roughly, this means that about 45 out of 100 generated
mnemonic words (unigrams) are identically matched to
the ground truth. In addition, the results again show that
DeepMnemonic is robust to the width of the beam search. In
contrast, the BLEU-n values (from 1 to 4) of Bigram improve
significantly by increasing the beam width from b = 1 to
b = 5. But the best BLEU-1 (37.22) of Bigram at b = 5 is still
lower than DeepMnemonic at b = 1.

In addition, it is worth noting that BLEU-n is designed
to measure the correspondence between each pair of the
generated mnemonic sentence and ground-truth sentence.
However, it is possible that a generated mnemonic sentence
is helpful to assist users in memorizing a given password,
but it may have a low BLEU-n score if the generated
sentence does not match to its ground truth very well. To
mitigate this issue, Section 5 further conducts a user study
about the helpfulness of DeepMnemonic, where participants
are invited to memorize and recall the assigned passwords
using mnemonic sentences generated by DeepMnemonic.

TABLE 2: The BLEU scores of DeepMnemonic and bigram
language model (Bigram) given beam width (b) 1 and 5.

DeepMnemonic Bigram
b = 1 b = 5 b = 1 b = 5

BLEU-1 45.17 45.29 28.82 37.22

BLEU-2 30.26 30.38 14.72 22.07

BLEU-3 22.33 22.44 8.49 14.29

BLEU-4 16.47 16.57 5.09 9.48

4.4 Case Study

In this section, we conduct a case study to provide a
complementary understanding of the generated mnemonic
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sentences. The case study reveals the influence of pass-
word lengths and digital/special characters on mnemonic
generation. Moreover, we visualize the effectiveness of
the attention mechanism in DeepMnemonic to explain its
semantic meaningfulness.

Given a list of 10 randomly selected passwords of dif-
ferent lengths, Table 3 shows the corresponding mnemonic
sentences generated via DeepMnemonic and Bigram meth-
ods. Note that the row “Original” shows the ground-truth
sentences from our ground-truth dataset.

4.4.1 Password Length

It can be observed that, for short passwords, all the sen-
tences generated by either DeepMnemonic or Bigram match
all the password characters (i.e., 100% MP). However, as
the password length grows, the unknown token “<UNK>”
begins to appear more frequently in the mnemonic sen-
tences generated by Bigram compared to DeepMnemonic.
The main reason is that, when generating a sentence, it is
sometimes difficult for the Bigram model to find a word that
not only identically matches the given password character
but also has the conditional probability greater than zero
given the preceding word. For example, Bigram begins
to generate the unknown token “<UNK>” from the third
position onwards in Case 7. Given the first generated word
“but”, the model identifies the next word “z2”, which has
the highest probability and also starts with the character
“z” of the given password. However, when continuing to
generate the next word based on “z2”, Bigram fails to find
any words that start with the password character “e” and
also have the positive conditional probability. As a result,
Bigram generates an unknown token instead. In contrast,
DeepMnemonic does not have such issue, and for each
given password, it can complete the automatic generation
of an entire meaningful sentence.

Figure 3 plots the impact of password lengths on MP
values at b = 5. We can observe that for both Bigram
and DeepMnemonic, MP values decrease as the passwords
become longer. The longer the passwords are, the more diffi-
cult the task of generating semantically sensible sentences is.
It is clear that the MP values of DeepMnemonic are always
better than those of Bigram at different password lengths,
suggesting that DeepMnemonic generates better mnemonic
sentences from the given passwords. For example, the
mnemonic sentence generated by DeepMnemonic in Case
9 in Table 3 is more sensible and memorable than that by
Bigram, although both sentences match all characters of the
given password.

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

8 9 10 11 12 13 14 15 16

MP	CHANGES	WITH	 PASSWORD	
LENGTH

DeepMnmonic	MP Bigram	MP

Fig. 3: Impact of the password length on MP values (%)
given b = 5.

4.4.2 Digital and Special Characters
In many password generation systems, digital and special
characters play an important role in creating strong pass-
words. DeepMnemonic is able to handle such characters
when generating mnemonic sentences for strong passwords.

As shown in Case 3 of Table 3, DeepMnemonic generates
a digital sequence “1937” from number “1” in the given
password, and then it concatenates previously generated
words to form a meaningful expression, “in february 1937”,
for the given password subsequence “iF1”. In contrast,
Bigram generates the words “it for 1” for the same sub-
sequence, which is less readable and not much helpful
for remembering the password. Overall the mnemonic
sentence generated by Bigram is not as meaningful as the
sentence by DeepMnemonic. In Case 6, DeepMnemonic
generates a sensible mnemonic phrase “75 causalities in
24 hours” from a password segment “7ci2h”, and also
produces an overall semantically meaningful mnemonic
sentence. Although Bigram generates a meaningful phrase
“70 countries in 2006 have” from the same password
segment, unfortunately, it ends up with a grammatically
incorrect and semantically inconsistent sentence.

In general, it is challenging to handle special characters
of passwords such as “/” and “*” during generating
mnemonic sentences. For example, in Case 2, given a
slash character “/” between “a” and “e” of the password,
DeepMnemonic generates a sensible phrase “ author /
editor”, where “/” normally represents “or”, while the
Bigram model outputs a strange phrase “a / etc” for the
same password segment. In Case 4 of Table 3, following
the password segment “*g*”, DeepMnemonic generates a
reasonable phrase “*good*”. Though it is not identical
to the original one (“*giddy*”), semantically, this phrase
can be used to highlight the meaning of “good” in the
generated sentence. However, Bigram fails to generate either
a short sensible phrase or an entire semantically meaningful
sentence.

One more interesting example is the colon symbol “:” in
Case 10, which is typically used to indicate the start of an
utterance. Surprisingly, DeepMnemonic generates a name
“alan” (Alan) for the character “A” in front of the colon
“:”, and then generates an utterance for the subsequence of
characters following the colon symbol. Bigram fails again to
handle this special character.

4.4.3 Attentive Generation of Mnemonic Sentences
Generally, a mnemonic sentence, which not only literally
covers the characters of the given password, but is also se-
mantically meaningful, is more useful for users to memorize
every password character properly.

As shown in Case 8 of Table 3, DeepMnemonic generates
a mnemonic sentence, “today, i would like to read the letter
of karl james.” from password “T,IwltrtloKJ.” Although this
is not identical to the ground-truth sentence, i.e., “today,
i would like to recognize the life of ken jablonski.”, our
generated mnemonic sentence seems easier for users to fol-
low and recall the corresponding password. DeepMnemonic
decodes the given password segment “KJ” as a name,
“karl james”, and surprisingly, it turns out to be a new
person name that does not even appear in the training data.
This demonstrates the ability of DeepMnemonic to capture
the semantic context of input passwords as well as the
relationship between each pair of password and mnemonic
sentence. This also shows that the attention mechanism in
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TABLE 3: Randomly selected passwords and the corresponding mnemonic sentences generated by DeepMnemonic and
Bigram (Original means that the mnemonic sentences come from the ground-truth dataset).

No. Length Items Values

Case 1 Short

Password Y m s , b t o .
Original you’ll miss some , but that’s okay .
DeepMnemonic you may say , but that’s ok .
Bigram you might say , but the other .

Case 2 Short

Password S I b a a / e ?
Original should i buy a acoustic / electric ?
DeepMnemonic should i be an author / editor ?
Bigram so i bought at a / etc ?

Case 3 Short

Password T f i d i F 1 .
Original this finding is diagrammed in figure 1 .
DeepMnemonic the festival is due in february 1937 .
Bigram the first i do it for 1 .

Case 4 Medium

Password B I j c d t * g * t .
Original but i just can’t do the * giddy * thing .
DeepMnemonic but i just can’t do the * good * thing .
Bigram but i just can’t do they * go <UNK> <UNK> <UNK>

Case 5 Medium

Password T c a h m , “ W a c ? ”
Original the child asks his mother , “ what are circles ? ”
DeepMnemonic the child asked her mother , “ who are children ? ”
Bigram they can also have more , “ we are called ? ”

Case 6 Medium

Password D t m t b h s 7 c i 2 h ?
Original does this mean the book has sold 7 copies in 24 hours ?
DeepMnemonic does this mean that because he sees 75 casualties in 24 hours ?
Bigram during the more than before he said 70 countries in 2006 have ?

Case 7 Medium

Password B Z e p a l i h h t c h .
Original but zeus ever pursued and longed in his heart to catch her .
DeepMnemonic but zelotes ever pushed a line in his head to crucify him .
Bigram but z2 <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> <UNK>

Case 8 Medium

Password T , I w l t r t l o K J .
Original today , i would like to recognize the life of ken jablonski .
DeepMnemonic today , i would like to read the letter of karl james .
Bigram this , it was like to read the lord of knowledge <UNK> <UNK>

Case 9 Long

Password D t s w i N - D , l a t a p .
Original during the six weekends in new - delhi , lunch and tea are provided .
DeepMnemonic during the second week in november - december , lakes awoke to a pond .
Bigram during the same way is no - day , look at the air pollution .

Case 10 Long

Password A : Y , b t e n t b a i a l .
Original ac : yes , but the egg needs to be altered in a lab.
DeepMnemonic alan : yeah , but that’s exactly not the best album in a league .
Bigram a : yes , but the early next to be an important as long .

DeepMnemonic captures not only the full view of an input
password context but also its salient parts, both of which
are useful for mnemonic word inference at each generation
step.

Figure 4 visualizes the attention weights in alignment
between each pair of input password (y-axis) and generated
mnemonic sentence (x-axis) for Case 5 and Case 6. Each
pixel denotes the attention weight αt′,t of the t-th password
character with regard to t′-th target mnemonic word in
grayscale (0: black, 1: white). The brighter the pixel is, the
more important the password character is to the generation
of the corresponding mnemonic word. From the heat map,
we can observe that DeepMnemonic concentrates on the
important characters of an input password when it decodes
individual target mnemonic words in the generation phase.
In addition, the attention layer also takes into account
the contextual neighboring characters of each password
for mnemonic sentence generation. Thanks to the atten-
tion mechanism, DeepMnemonic automatically learns the
alignment and discovers which characters in the input
password are more important for generating a semantically
meaningful mnemonic sentence.
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Fig. 4: The heat map of the attention weights αt′,t in
grayscale (0: black, 1: white)

5 USER STUDY

This section conducts a user study to analyze the usability
of DeepMnemonic, and validates that the mnemonic sen-
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Instruction for the user study

Password memorization phase I

Password recall phase I

Password memorization phase II

Password recall phase II

Online questionnaire phase

Instruction

Memorization Phase I

Recall Phase I

Memorization Phase II

Recall Phase II

Online Questionnaire

Fig. 5: The user study procedure.

tences generated by DeepMnemonic are helpful for users to
memorize passwords.

5.1 User Study Setting
In this user study, we recruited 24 participants from univer-
sities and institutes, and randomly divided them into three
groups, labeled as group 0, group 1, and group 2. The lengths
of passwords assigned to the three groups were 8, 12, and
16, respectively. This user study included three main tasks,
i.e., password memorization, password recall, and online
questionnaire. The password memorization and password
recall tasks were conducted face-to-face in our lab, where
we gave task instructions and measured the participants’
performance using a timer.

Figure 5 illustrates the user study procedure. In Mem-
orization Phase I without the aid of mnemonic sentences,
each participant was asked to memorize an assigned pass-
word p1, where the time the participant used for memoriza-
tion is t1. Then, after a period of time, in Recall Phase I,
each participant was asked to recall and write down the
assigned password p1, and the recalled password is r1.
In Memorization Phase II with the aid of the mnemonic
sentences generated by DeepMnemonic, each participant
was asked to memorize a different assigned password p2,
where the time the participant used for memorization is
t2. Later in the Recall Phase II, the recalled version of
p2 is termed as r2. Finally, the online questionnaire was
designed to evaluate the participants’ experiences about
the whole user study process. Following the forgetting
curve theory [38], we set the time gap between password
memorization and password recall to 48 hours1.

5.2 User Study Results
Figure 6 shows the average results over all participants
within each group (i.e., with the same password length)
with and without the aid of the generated mnemonic
sentences by DeepMnemonic.

Figure 6a shows the time costs in memorizing the
passwords without (t1) and with (t2) the aid of mnemonic
sentences. Note that t2 includes the time for memorizing the
associated mnemonic sentence in addition to the password.
It is observed that t2 is lower than t1, especially for
memorizing longer passwords. We conducted a statistical
t-test which can work well with our small set of samples
that approximate the normal distribution [39] [40]. The
difference between the two sets of time costs is statis-
tically significant at a significance level α = 0.01. This
indicates that, by using the mnemonic sentences generated

1. The detailed user study design as well as the ethical consideration
can be found at https://goo.gl/KtwuGB

by DeepMnemonic, the participants are able to memorize
the passwords more quickly than without the aid of any
mnemonics. For group 2, who memorized passwords of
length 16, the observed difference is more significant, i.e.,
110 seconds versus 42.6 seconds with pvalue = 0.007.
Clearly, DeepMnemonic shows its capability of assisting in
memorizing passwords more effectively, and is especially
helpful for memorizing relatively long passwords.

Figure 6b evaluates the password recall in terms of
edit distance between each pair of recalled password r
and assigned password p (the smaller, the better). Overall
the average edit distance with the aid of DeepMnemonic
is smaller than that without using DeepMnemonic. The
differences become even larger when the password lengths
become longer. For group 2 where the password length is 16,
the average edit distance with the aid of DeepMnemonic is
significantly smaller than that without the aid. Our statisti-
cal test shows that the difference is significant given the level
α = 0.01. However, for shorter passwords in group 0 where
password length is 8, the average edit distances with and
without using DeepMnemonic are almost the same (0.75).
A possible explanation is that, when a given password is
short, the efforts used to remember the generated mnemonic
sentence and the password itself are comparable. In such
case, using mnemonic sentences may incur extra burdens
for memorizing short passwords.

This can also be discovered from the complete recall ratio
in Figure 6c (the higher, the better). It shows that users can
recall 8-character passwords better without the burden of
memorizing extra mnemonic sentences. However, the help-
fulness of mnemonic sentences becomes obvious for users to
memorize 12-character and 16-character passwords. Overall
the mnemonic sentences generated by DeepMnemonic are
effective in improving the performance of password recall,
especially for longer/stronger passwords.

In addition, we analyzed the results of online question-
naire to evaluate the user experience. Figure 7 shows that
only 8.3% of the participants indicated that they are not
perplexed by memorization of passwords, which clearly
suggests that remembering passwords is indeed a difficult
task. Almost 96% of participants agreed that the passwords
assigned to them are secure and strong. About 46% of them
considered their assigned passwords easy to remember. We
note that the majority of them come from group 0, where
their assigned passwords are not very long, and are thus
not very difficult to remember.

A large portion of the participants agreed that both gist
and exact words of each generated mnemonic sentence are
helpful and easy to remember. Almost 71% and 67% of
participants agreed on the two points, i.e., “gist is easy to
remember” and “wording is easy to remember”, respec-
tively. With regard to grammatical correctness, about 8.3%
of participants noticed a few grammar errors existed in the
generated sentences. For example, in Case 6 of Table 3, the
simple present tense in the sentence may not be rigorously
reasonable. The majority of the participants (70.9%) agreed
that the mnemonic sentences generated by DeepMnemonic
are meaningful. Overall, 79.2% of participants recognized
that DeepMnemonic is generally helpful for remembering
the given passwords.

6 DISCUSSION
In this section, we discuss several issues related to the
usability of DeepMnemonic.
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t1 t2 d1 d2

65 43 0 1

194 16 4 3

104 20 1 0

65 42 3 1

201 58 8 1

49 42 4 0

95 23 6 0

107 97 3 2

110 42.625 3.625 1

Group 2

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2

Mean 110 42.625 Mean 3.625 1

Variance 3339.714 685.6964 Variance 6.553571 1.142857

Observations 8 8 Observations 8 8

Hypothesized Mean Difference0 Hypothesized Mean Difference0

df 10 df 9

t Stat 3.003576 t Stat 2.676268

P(T<=t) one-tail0.006631 P(T<=t) one-tail0.01268

t Critical one-tail1.812461 t Critical one-tail1.833113

P(T<=t) two-tail0.013262 P(T<=t) two-tail0.025361

t Critical two-tail2.228139 t Critical two-tail2.262157

0

20

40

60

80

100

120

8 charecters 12 charecters 16 charecters

M
em

o
ri

za
ti

o
n

 T
im

e 
(s

)

Without DeepMnemonic (t₁)

With DeepMnemonic (t₂)

(a) Memorization time cost

Group 0 Group 1 Group 2

without with without with without with

time 10.875 9.75 55.375 27.875 110 42.625

edit distance 0.75 0.75 0.875 0.5 3.625 1

Without DeepMnemonic (t₁)With DeepMnemonic (t₂)
8 charecters 10.875 9.75

t-Test: Two-Sample Assuming Unequal Variances 12 charecters 55.375 27.875
16 charecters 110 42.625

Without DeepMnemonic (between p₁ and r₁)With DeepMnemonic (between p₂ and r₂)

8 charecters 0.75 0.75

12 charecters 0.875 0.5

16 charecters 3.625 1

0

1

2

3

4

8 charecters 12 charecters 16 charecters

Ed
it

 D
is

ta
n

ce

Without DeepMnemonic (between p₁ and r₁)

With DeepMnemonic (between p₂ and r₂)

(b) Edit distance

Without DeepMnemonic
8 charecters

12 charecters
16 charecters

Without DeepMnemonic
8 charecters

12 charecters
16 charecters0%

20%

40%

60%

80%

8	charecters 12	charecters 16	charecters

Co
m
pl
et
e	
Re

ca
ll

Without	DeepMnemonic

With	DeepMnemonic

(c) Complete recall

Fig. 6: The comparison results of different user groups with and without using DeepMnemonic. We compare the
memorization time cost (a), edit distance (b), and complete recall ratio (c) of the three groups without and with the
aid of DeepMnemonic. For each comparison, the results for different password lengths are shown separately.

Strongly disagree Disagree Neutral Agree Strongly agree
You are perplexed by remembering passwords. 1 2 9 9 1 22
The passwords assigned to you during the user study are strong passwords. 0 2 0 17 3 22
The passwords assigned to you during the user study are easy to remember. 2 9 3 7 1 22
The gist of the mnemonic sentence generated by DeepMnemonic is easy to remember exactly. 0 1 7 13 1 22
The mnemonic sentence generated by DeepMnemonic are easy to remember exactly. 0 2 6 13 1 22
The mnemonics generated by DeepMnemonic is grammatically correct. 0 3 5 10 4 22
The mnemonics generated by DeepMnemonic is semantically meaningful. 0 2 6 12 2 22
DeepMnemonic is generally helpful in remembering the passwords in general. 0 0 6 14 2 22

Strongly disagree Disagree Neutral Agree Strongly agree
You are perplexed by remembering passwords. 0 2 9 10 3 24
The passwords assigned to you during the user study are strong passwords. 0 1 0 18 5 24
The passwords assigned to you during the user study are easy to remember. 1 9 3 8 3 24
The gist of the mnemonic sentence generated by DeepMnemonic is easy to remember exactly. 0 0 7 14 3 24
The mnemonic sentence generated by DeepMnemonic are easy to remember exactly. 0 2 6 14 2 24
The mnemonics generated by DeepMnemonic is grammatically correct. 0 2 5 11 6 24
The mnemonics generated by DeepMnemonic is semantically meaningful. 0 1 6 13 4 24
DeepMnemonic is generally helpful in remembering the passwords in general. 0 0 5 15 4 24

Strongly disagree Disagree Neutral Agree Strongly agree
You are perplexed by remembering passwords. 0 2 9 10 3 24
The passwords assigned to you during the user study are strong passwords. 0 1 0 18 5 24
The passwords assigned to you during the user study are easy to remember. 1 9 3 8 3 24
The gist of the mnemonic sentence generated by DeepMnemonic is easy to remember exactly. 0 0 7 14 3 24
The mnemonic sentence generated by DeepMnemonic are easy to remember exactly. 0 2 6 14 2 24
The mnemonics generated by DeepMnemonic is grammatically correct. 0 2 5 11 6 24
The mnemonics generated by DeepMnemonic is semantically meaningful. 0 1 6 13 4 24
DeepMnemonic is generally helpful in remembering the passwords in general. 0 0 5 15 4 24

Strongly disagree Disagree Neutral Agree Strongly agree
You are perplexed by remembering passwords. 0.0% 8.3% 37.5% 41.7% 12.5%
The passwords assigned to you during the user study are strong passwords. 0.0% 4.2% 0.0% 75.0% 20.8%
The passwords assigned to you during the user study are easy to remember. 4.2% 37.5% 12.5% 33.3% 12.5%
The gist of the mnemonic sentence generated by DeepMnemonic is easy to remember exactly. 0.0% 0.0% 29.2% 58.3% 12.5%
The mnemonic sentence generated by DeepMnemonic are easy to remember exactly. 0.0% 8.3% 25.0% 58.3% 8.3%
The mnemonics generated by DeepMnemonic is grammatically correct. 0.0% 8.3% 20.8% 45.8% 25.0%
The mnemonics generated by DeepMnemonic is semantically meaningful. 0.0% 4.2% 25.0% 54.2% 16.7%
DeepMnemonic is generally helpful in remembering the passwords in general. 0.0% 0.0% 20.8% 62.5% 16.7%
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0.0% 8.3% 37.5% 41.7% 12.5% 100.0%
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0.0% 4.2% 0.0% 75.0% 20.8% 100.0%
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4.2% 37.5% 12.5% 33.3% 12.5% 100.0%
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0.0% 0.0% 20.8% 62.5% 16.7% 100.0%

The mnemonics generated by DeepMnemonic is semantically meaningful.

DeepMnemonic is generally helpful in remembering the passwords in general.

You are perplexed by remembering passwords. 

The passwords assigned to you during the user study are strong passwords. 

The passwords assigned to you during the user study are easy to remember.

The gist of the mnemonic sentence generated by DeepMnemonic is easy to remember 
exactly.

The wording of the mnemonic sentence generated by DeepMnemonic is easy to 
remember exactly.

The mnemonics generated by DeepMnemonic is grammatically correct.

Fig. 7: Online questionnaire analysis results.

6.1 Learning from Multiple Strong Password Genera-
tion Rules

In general, the successful application of DeepMnemonic
to automatic mnemonic generation largely depends on the
large-scale training data used for building the sequence-to-
sequence learning model. Recall that in our experiments,
we generated pairwise password and mnemonic sentence
training data from Webis-Simple-Sentences-17. For each
sentence in the dataset, we followed one strong password
generation rule proposed in [22], and thus concatenated
all the first letter of each word and special characters
in the sentence so as to create a password. It is worth
noting that DeepMnemonic is not limited to this single
strong password generation rule adopted for constructing
the pairwise training data. It is possible that DeepMnemonic
can also be trained on other datasets constructed using
different password generation rules, such as concatenating
the last letter of each word instead of the first letters in
deriving passwords. Thanks to the use of the sequence-to-
sequence learning model, DeepMnemonic is able to learn
language generation patterns automatically from the train-
ing data, and map passwords to mnemonic sentences in
testing. Therefore, it is possible to train multiple encoder-
decoder language generation models in DeepMnemonic
using different password generation rules. As a result,
users have flexibility to choose from multiple generated
mnemonic sentences for a given password, which may
further improve the usability of DeepMnemonic.

6.2 Baseline Selection
The n-gram language model used in our comparison eval-
uation is one of the most well-known language generation
models. We have tested various values of n (n ∈ [1, 4]) in
the experiments. Since the bigram language model achieved
the best performance among different n, it was selected as
the baseline.

We discovered that when using a unigram language
model to map from a password sequence to a mnemonic
sequence, the model cannot leverage on the context, i.e.,
preceding words. As a result, the words that appear more
frequently in training data are considered more important,
and are then assigned with a higher probability for predic-
tion. For example, given a password character “t”, it is very
likely that the unigram language model would generate the
word “the”, regardless of the preceding contextual words.
In addition, trigram (n = 3) and 4-gram based language
models built on the pairwise training data often suffer from
sparse co-occurrence information, and output the unknown
token <UNK>. It is more likely that these models, compared
to the bigram models, generate empty list of candidate
words from two or more contextual preceding words and
a target password character. According to our experimental
results, when n is larger than 2, the language models have
more difficulty in generating complete sentences.

6.3 Evaluation Metric
BLEU is one of the most popular automated metrics for
evaluating the quality of machine translation [37] in natural
language processing. The quality is often considered to be
the matching degree between each pair of generated sen-
tence and ground-truth sentence. The closer the generated
sentence is to the ground-truth, the better the language
generation is. Our quantitative experimental results show
that DeepMnemonic significantly outperforms the well-
established bigram language model in terms of BLEU.

We note that BLEU is perhaps a good metric to evaluate
the quality of machine translation, where each generated
or translated sentence should be close to the reference
translation (ground truth) as much as possible. The state-
of-the-art BLEU score is 34.8 for machine translation using
deep neural networks [35]. However, BLEU may not be a fair
metric for evaluating the password mnemonic generation,
which aims to assist users in password memorization. It
is true that the generated mnemonic sentences sometimes
do not match perfectly to the reference sentences (ground
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truth), which may lead to poor BLEU scores. However, it is
possible that such mnemonic sentences are still helpful for
memorizing passwords, as long as they are grammatically
correct and semantically meaningful by themselves, as
shown in Table 3. Another complementary metric MP is thus
designed to evaluate the quality of password mnemonic
generation.

6.4 User Study Scale and Population
In our user study, we recruited 24 participants to evaluate
the usability of DeepMnemonic. Despite the small scale, the
user study shows that DeepMnemonic is helpful in assisting
users in better memorizing the passwords, especially when
passwords are relatively long. A limitation of this user
study lies in the age distribution of the participants. The
ages of the participants range from 24 to 40, which are not
representative of younger or older population. Indeed, this
is also a challenge in many other user studies [41]. Our user
study suggests that DeepMnemonic is generally helpful for
young and middle-aged people. It remains a future work to
evaluate the DeepMnemonic against other age groups.

6.5 Lowercase and Uppercase Password Characters
DeepMnemonic does not handle lowercase and uppercase
characters when generating mnemonic sentences, and thus
cannot help users distinguish between them. We have
tried to build a variant DeepMnemonic model, which
can generate sentences that differentiate lowercase and
uppercase characters. However, its performance (e.g., BLEU
and MP) is not as good as that of current DeepMnemonic
model. We plan to deal with this lowercase and uppercase
character issue in the future work. In addition, users may
have multiple passwords across various platforms. It would
be interesting to extend DeepMnemonic so that it can help
users memorize their passwords across different platforms.

6.6 Generating Mnemonics in Different Languages
Currently, the proposed DeepMnemonic has been shown to
be effective for generating mnemonics for the given strong
passwords in English. Similar to the sequence-to-sequence ma-
chine translation task in natural language processing [30],
the underlying encoder-decoder model of DeepMnemonic
can encode any input password into a semantic vectorial
representation and decode the representation into a semanti-
cally meaningful mnemonic sentence in the target language.
In the case of suitable training datasets being available
in other languages (e.g., Chinese), DeepMnemonic can be
adapted to the mnemonic sentence generation in a different
language.

7 RELATED WORK

7.1 Strong Password Evaluation and Generation
A lot of efforts have been made in the past to assess the
strength of passwords or to generate strong passwords.
The strength of a password can be typically evaluated by
two common metrics, namely, entropy and guessability.
The entropy measures how unpredictable a password is by
considering the length of password and the distribution of
characters in the password. One limitation of the entropy-
based measurement [42] is that it only supplies users with
rough approximations of password strength [3] [43] [44]. In

contrast, guessability-based measurement, which is defined
as the number of guesses required to break a password, has
become increasingly popular. To evaluate the guessability
of a password, one key step is to identify an algorithm
for password cracking, such as the Probabilistic Context-
Free Grammar model (PCFG) [10] [11] [6] and the Markov
n-grams model [12] [4]. These cracking algorithms exploit
the password distributions that are derived from various
password datasets disclosed in previous security incidents.
It is revealed that different password datasets collected
from different user groups demonstrate different distribu-
tions [45] [46]. Then, the guessability of the password can
be measured using the cracking algorithm.

Previous studies have evaluated the password strength
by measuring the popularity of passwords. Schechter et
al. [47] evaluated user-chosen passwords by identifying
undesirably popular passwords. The passwords within
certain popularity threshold are considered secure under
probabilistic attacks. It is argued that the existing password
creation policies can be replaced with popularity limits
so as to strengthen both security and usability for user
authentication systems.

Strong password generation aims to strengthen pass-
words via changing or adding characters to the passwords.
Generation of persuasive text passwords is one of such
approaches, which inserts one to four characters at random
positions in a given password [7] [8]. Recently, Houshmand
and Aggarwal [9] presented an analyze-modify method to
generate strong passwords. They first evaluated password
strength using PCFG. For identified weak passwords, they
modified them based on a set of editing rules. One limitation
of strong password generation is that it does not take into
consideration the usability or memorability of passwords.
As a consequence, the generated passwords may not be
user-friendly in practice.

7.2 Memorable Password Generation

A variety of strategies have been employed to create
easy-to-remember passwords by service providers. One
strategy is to generate pronounceable passwords [16] [18].
For example, pronounceable password “kilakefe52” is com-
prised of a random sequence of vowel-consonant pairs [16].
Another strategy is to create memorable passwords that
comprise multiple components with certain meanings [17].
For example, password “#FreDDi17%” can be divided into
three meaningful parts, i.e., “#” (identity), “FreDDi” (name),
and “17%” (percentage). The third strategy aims to generate
passwords by simply concatenating a list of random words
via hyphen character [19]. The benefit of this strategy is
twofold: (i) It is usually difficult to guess unrelated words
of the generated passwords; and (ii) Longer passwords
often lead to higher entropy and security [48]. Although
the generated passwords via the aforementioned strategies
are memorable, their strengths have not been systematically
evaluated yet, and some of them are vulnerable to password
attacks [20].

One typical approach to generate memorable yet strong
passwords is to rely on meaningful language expressions,
making use of specific parts of given reference sentences
or phrases according to certain generation rules [21] [20]
[22]. For example, password “Ilwm.” can be generated by
joining the first character of each word and the punctuation
in the following sentence: “I love watching movies.” The
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expression-based passwords generated by this approach are
often supposed to be stronger than those selected intuitively
by users [13]; given reference sentences or phrases, the
usability cost for memorizing the generated passwords is
almost comparable to memorizing those intuitive ones.
Yang et al. [20] demonstrated that the security level of
an expression-based password was largely affected by its
generation rules, which was also validated by Kiesel et
al. [22]. However, it is not clear how various generation
rules at different security levels affect the usability costs
for memorizing the generated passwords. Due to users’
behavioral tendency toward picking up easy-to-remember
reference sentences [7], the generated memorable passwords
using such human-selected language expressions may be
easy-to-guess by attackers.

Researchers have studied various tips for creating
mnemonic passwords, including sentence substitution
(SenSub), key-board change (KbCg), using a formula
(UsForm), and special character insertion (SpIns) [49].
Alphapwd [50] is a memorable password generation
strategy based on password shapes. In order to create
memorable passwords, Alphapwd requires user to
remember a shorter sequence of letters that are shown
in larger size on top of a normal keyboard; a user may
derive his/her strong password easily from the keyboard
following the strokes of the shorter sequence of large-
size letters. The strengths of these generated passwords
are evaluated using probabilistic attack algorithms such
as the PCFG algorithm and MarKov model trained on
previous disclosed password datasets. Ghazvininejad and
Knight [51] proposed to generate passwords in the form
of English sequences, called passphrase, whose lengths
range from 31.2 to 87.7 characters on average. However,
experiments revealed that it is difficult for common users
to reproduce the exact wording of passphrases, even if
they manage to remember the gist of these sentences [52].
Being complementary to these memorable password
generation methods, DeepMnemonic is designed to
generate mnemonic sentences for any given passwords
instead of generating new passwords.

7.3 Password Mnemonics

To improve the memorability of given strong passwords,
various types of hints or mnemonic tools have been used.
Atallah et al. [53] is the first to propose the concept of
using funny jingles for memorizing a randomly generated
password. One challenge of this proposal is the generation
of related funny jingles. Several other efforts were made
to assist users in remembering passwords via external
tools, such as helper card [23], hint image [24] [25], and
engaging game [26]. Jeyaraman and Topkara [27] proposed
to match given passwords to textual headlines or their
variant versions selected from a given corpus to assist
users in remembering passwords. One drawback of this
approach is that the variant headlines generated may be
syntactically incorrect or semantically inconsistent. Due
to the limited length of the headline text, this approach
can only generate hints for short passwords and largely
fails for long and strong passwords. The memorability of
the passwords generated by this approach has not been
evaluated.

7.4 Natural Language Generation
In natural language processing, statistical language models
are to generate meaningful sentences by computing joint
probabilities of sequences of words from a dictionary
of a given language. One of the dominant methods for
probabilistic language modeling is the n-gram language
model [36], which is a non-parametric learning algorithm. It
relies on the preceding sequence of n− 1 words to estimate
the conditional probability for predicting (generating) the
current n-th word.

Recently, neural network based language models have
become increasingly popular in natural language genera-
tion tasks. Bengio et al. [54] proposed a generic neural
probabilistic language model, which can simultaneously
learn the distributed representation of each word and joint
probability function of sequences. Sutskever et al. [35]
proposed a sequence-to-sequence neural language model to
address the machine translation problem. One key benefit
of their model is that it can automatically generate a
translated sentence in the target language, given a sentence
in the source language. In order to improve machine
translation, Bahdanau et al. [30] introduced an attentive
alignment strategy to enhance the sequence-to-sequence
neural language model, which learned to dynamically pay
more attention to salient parts of the input sentences when
generating the translated sentences.

In this paper, we exploit natural language translation
techniques to generate human-readable and semantically
meaningful mnemonic sentences from any given passwords
so as to help users memorize strong passwords.

8 CONCLUSION

In this work, we have proposed DeepMnemonic, a deep
neural network based approach to automatic generation
of mnemonic sentences for any given textual passwords.
DeepMnemonic builds upon an attentive encoder-decoder
language generation framework, and works by translating
an input sequence of password characters to a natural
language sentence of mnemonic words. DeepMnemonic is
designed to bridge the gap between the strong password
generation and the usability of strong passwords. Exper-
imental results show that DeepMnemonic is capable of
generating semantically meaningful mnemonic sentences.
A user study is conducted to evaluate the usability of
DeepMnemonic, which shows that the generated mnemonic
sentences are helpful in memorizing strong passwords.
Specifically, with the aid of DeepMnemonic, the time used
for remembering a password is largely reduced, and the
password recall quality is also significantly improved. In
the future, we plan to train DeepMnemonic using more
comprehensive and diverse training data.
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